
Finding Optimal Bitsliced Implementations of
4 × 4-bit S-boxes?

Markus Ullrich??, Christophe De Cannière, Sebastiaan Indesteege,
Özgül Küçük, Nicky Mouha? ? ?, and Bart Preneel

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
Markus.Ullrich@esat.kuleuven.be

Abstract. In this paper, we will present an approach to find efficient
bitsliced implementations of invertible 4 × 4-bit s-boxes. The approach
generalises the methods introduced by Osvik [12]. We consider equiva-
lence classes of s-boxes under linear and affine equivalence and search
for the most efficient s-box in each class. The properties of these s-boxes
are discussed and compared with s-boxes used in existing cryptographic
primitives. Finally, we propose a methodology to design efficient crypto-
graphic primitives by making use of our findings.

Keywords: Cryptography, s-boxes, efficiency, bitslicing, software imple-
mentation, equivalence class.

1 Introduction

The integration of security applications on embedded and mobile plat-
forms requires lightweight and efficient cryptographic primitives. In this
work, we focus on the efficient software implementation of 4 × 4-bit
s-boxes. S-boxes are an essential part of many cryptographic primitives.
We investigate bitsliced implementations, which proved to be a very ef-
ficient implementation technique for AES [5, 7, 6] and Serpent [12]. Bit-
slicing is an implementation technique where bitwise operations can be
parallelised due to the fact that processors work with registers larger than
one bit. On modern CPUs this can be up to a factor of 128 [11]. Intel’s
upcoming AVX extension will even allow 256-bit operands.
? This work was supported in part by the Research Council K.U.Leuven: GOA

TENSE, and by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy), and in part by the European Commission through the ICT program
under contract ICT-2007-216676 ECRYPT II.

?? This author is an FWO Doctoral researcher.
? ? ? This author is funded by a research grant of the Institute for the Promotion of

Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

In this paper, we show how to find the most efficient bitsliced imple-
mentations of s-boxes. In contrast to previous approaches, the aim of this
work is to cover the whole range of 4 × 4-bit s-boxes by classifying the
s-boxes into equivalence classes and finding the most efficient s-box per
class. The classification criterion we choose provides invariant properties
with regard to linear and differential cryptanalysis. We discuss the s-box’s
application in the design of efficient ciphers.

In Sect. 2, a brief overview of previous work is presented. The classifi-
cation method and the search for efficient implementations are presented
in Sect. 3. In Sect. 4, we discuss the results obtained and compare them
to s-boxes used in other cryptographic primitives. A new approach to de-
sign primitives is proposed in Sect. 5, and it is explained how designers
can benefit from this work. In Sect. 6, we suggest further ideas to be
investigated based on our findings. We conclude in Sect. 7.

2 Previous Work

Osvik introduces algorithms to find efficient implementations of a given
s-box in [12]. The approach requires that the s-box is given and does not
search for s-boxes with optimal implementations costs. Osvik’s approach
uses a heuristic algorithm. While this reduces the search complexity, it
does not guarantee that the optimal solution will be found. He applied
these techniques to find efficient implementations of the Serpent s-boxes.

Watanabe used a search technique similar to Osvik’s to generate an
efficient s-box for the hash function Luffa [14]. In contrast to Osvik’s ap-
proach, the s-boxes were not specified in advance. The aim of the search
is to find an s-box with strong properties and a low implementation cost.
In a first version, the s-boxes have been generated using predefined build-
ing blocks. A first version of building blocks guaranteed invertibility and
the second version has been introduced to improve the performance. The
second version of the Luffa s-box has been designed by combining ran-
dom instructions. This method is expected to find good s-boxes, but it
is not guaranteed that an s-box with the optimal trade-off between the
implementation cost and the cryptographic properties will be found.

3 Our Approach

3.1 S-box Properties and Classification

Typically, block ciphers are constructed using non-linear s-boxes and lin-
ear layers. The decomposition into linear and non-linear building blocks

2

Fig. 1. Affine equivalence algorithm

is not unique. Linear operations can be moved between those building
blocks. Any linear or affine transformation applied to the input or the out-
put of an s-box could also be incorporated in the linear layer instead [9].

Definition 1. S-boxes are said to be affinely equivalent if the following
relation holds:

S1(x) = B · (S2(A · x⊕ a)⊕ b), ∀x ∈ {0, 1}n , (1)

with invertible linear mappings (A, B) and constants (a, b). The relation
is illustrated in Fig. 1.

The most important property is that all members of an affine equivalence
class share the same properties with respect to linear and differential
cryptanalysis. For this reason, the affine equivalence has been used as a
classification criterion in our search.

In order to characterise s-boxes, we make use of a set of important
properties:

– Difference distribution table [2]
– Linear approximation table [8]
– Branch number
– Existence of fixed points
– Algebraic degree of the output bits

The difference distribution table indicates the probability that a given
input difference results in a certain output difference. The probability that
certain correlations hold between inputs and outputs is given by the linear
approximation table. Worst-case probabilities are important to bound the
complexity of cryptanalytic attacks. Respectively, these probabilities are
referred to as the maximal differential probability (MDP) and maximal
linear probability (MLP). The linear approximation table and difference

3

distribution table depend only on the s-box. Any affine transformation
applied to the s-box can only swap elements in these tables, but not
change their values.

Another property is the branch number. It is an important property
describing the diffusion capabilities.

Definition 2. In this paper, the branch number is defined as

B = mina,b6=a(wh(a⊕ b) + wh(S(a)⊕ S(b)) , (2)

where wh is the Hamming weight and S the s-box.

A different definition is used in [4] where the branch number is defined
as a measure of how many s-boxes will be active in the next round. This
second definition is more suitable for entire rounds of a cipher than for
single s-boxes. The branch number according to Def. 2 depends on the
position of the values in the difference distribution table. This implies
that it can be influenced by affine transformations.

Fixed points depend on the affine transformations, due to affine con-
stants which can create or avoid any fixed point.

The affine transformation has only limited influence on the polynomial
representation of the output bits. It can merge or cancel out monomials by
performing additions between the output bits or change the operands by
performing additions at the input side. However, it can never create new
monomials of higher degree than the maximum degree already present. It
is also not possible to cancel out all maximum degree monomials by affine
transformations. The maximal algebraic degree is thus invariant within
each class.

3.2 Introduction into Search Algorithms

Before presenting our search approach, a brief introduction to search ter-
minology and algorithms has to be given.

Definition 3. The branching factor is defined as the average number of
childnodes of a node.

Depth first search (DFS) is an algorithm to search trees. It starts at
the tree’s root and visits as many nodes of one branch as possible before
backtracking, see Fig. 2(a). The time complexity of DFS is exponential in
the depth, O(bt

d) (with bt the tree’s branching factor and d the depth).
The algorithm’s memory requirement is linear in the depth, O(d). Only

4

(a) DFS (b) BFS

Fig. 2. The depth first search (DFS) and the breadth first search (BFS)

(a) Limit 0 (b) Limit 1 (c) Limit 2

Fig. 3. Iterative deepening depth first search (ID-DFS)

the nodes on the path to the current node have to be held in memory. In
infinite trees the depth first search will not terminate.

The breadth first search (BFS) visits all nodes of a depth before ad-
vancing to higher level of depth. It finds the solution which is the closest
to the root first. The main disadvantage of the search is the high memory
requirement which is exponential in the depth, O(bt

d). The time com-
plexity is O(bt

d) as for the DFS.

In the case of an unknown depth of the first solution the iterative
deepening depth first search (ID-DFS) solves the previously discussed
problem of the DFS. The algorithm repeatedly runs depth limited depth
first searches while increasing the limit. The limit is incremented by the
minimal possible increment such that at least one more node will be
visited in the next run. The algorithm is illustrated in Fig. 3. The ID-
DFS combines the property of monotonously increasing the depth, like
in BFS, with the lower space complexity of the DFS. The fact that many
nodes are visited multiple times does not influence the efficiency as much
as it may seem. The higher the branching factor the more significant
become the nodes that are further away from the root. The time and
space complexity are the same as for the DFS.

5

3.3 Search

The general goal of this work is to find the most efficient implementa-
tions of s-boxes. In Sect. 3.1, we introduced a classification criterion so
that we can group s-boxes with common properties with respect to linear
and differential cryptanalysis. Combined, one can find the most efficient
implementation that fulfil certain properties. In order to find the imple-
mentation, we introduce a search method.

The basic idea during the search is to go through all possible combi-
nations of an instruction set. The architecture, for which the implementa-
tions are searched for, consists of 5 registers and an instruction containing
the following instructions: AND, OR, XOR, NOT, MOV (copy). Four reg-
isters are needed to store the information of a 4× 4-bit s-box and a fifth
register is used for intermediate storage for the calculation of invertible
s-boxes. Our choice of the instruction set consists of the basic operations
of the commonly used architectures.

An important property of the search is that the number of instructions
is monotonously increasing. The first node found that represents a new
class is therefore also an optimal implementation of that class with respect
to the number of instructions.

Another property of the search is its deterministic behaviour. Deter-
minism guarantees that each run of the software will find exactly the same
set of representatives with the following definition:

Definition 4. The representative is the s-box of an affine equivalence
class with the least implementation cost (number of instructions) and
among those of equal cost, the order of the instructions determines which
is chosen.

These properties can be achieved by an iterative deepening depth first
search (ID-DFS).

Using the previously defined architecture results in a branching fac-
tor of 85, which is the number of instruction and operand combinations.
Reaching high depths with such a branching factor is not feasible. There-
fore, we implemented a set of rules that remove redundant nodes from
the search tree. First, we used the non-heuristic rules from Osvik [12].
They consist of the following rules:

– Recursion stops when the register contents can no longer generate a
permutation.

– When two instruction sequences are identied as being equivalent, we
remove one of them from the search.

6

Fig. 4. Affine equivalence used for caching

– No instruction other than MOV may make a register contain a copy
of the value in another register.

– Unread registers may not be written to by the MOV instruction.
– Negated registers (those last modied by a NOT instruction) are marked

as such, and may not again be negated until they have been read.

Second, we also removed nodes that are affinely equivalent with other
states saved in a cache. We interpreted the five registers of a node as an
unfinished 4 × 5-bit s-box. We consider the s-box as incomplete because
not every node represents an invertible s-box. Some nodes are only inter-
mediate steps before reaching a valid s-box. The affine mapping at the
output side can thus not be applied. More instructions may follow. Only
bit swapping is allowed at this stage because the order of bits is of no
impact. The equivalence algorithm is illustrated in Fig. 4. S and R are
affinely equivalent if there exists invertible linear mappings (A, B) and
a constant (a) such that the two s-boxes become equal. The branching
factor was reduced from 85 initially down to 10 when applying Osvik’s
rules. By using affine equivalences in the caching algorithm, the branching
factor could be even decreased further to less than 7.

3.4 Restrictions of the Search

We restricted the search by imposing the following properties:

– The size of the s-boxes has been set to 4 × 4-bit. 4 × 4-bit s-boxes
are the smallest commonly used s-boxes. The number of affine classes
was also important for this decision. While 4× 4-bit s-boxes have 302
affine equivalence classes, 5× 5-bit s-boxes have about 261 classes [9].
The latter is impractical to enumerate.

7

– We decided to limit our scope to invertible s-boxes. In principle, the
approach would work with non-invertible s-boxes as well. The main
argument is the efficiency of the search. The search space for non-
invertible s-boxes is larger and some of the used algorithms, e.g., the
equivalence algorithm, are less efficient for non-invertible s-boxes.

4 Results

The search was designed such that it would eventually find implementa-
tions for all classes. Correct results are found earlier so that the search
can be stopped at any time. The search ran for more than 2 months on
a computer with 8 cores3 and 64Gb of RAM used for caching. At the
moment the search was stopped, our program finished searching s-boxes
with 12 instructions. The search for s-boxes with 13 instructions is in-
complete. The search found the most efficient representatives of 272 out
of 302 equivalence classes. A list of these representatives is presented in
appendix A. These representatives represent about 90% of all 4× 4-bit s-
boxes. There are two main reasons for stopping the search. First, the most
efficient s-box for a class with optimal non-linear properties, MDP = 1/4
and MLP = 1/2 + 1/4, has been found. This s-box makes use of only 9
instructions. S-boxes with 13 instructions have 44% higher cost but their
advantage against linear and differential cryptanalysis is limited. Second,
the complexity of the search is exponential in the depth of the search.
Much more resources are required to find the last equivalence classes.

4.1 Cost vs. Properties

As a first analysis, we look at the correlation between the implementation
cost and the properties regarding linear and differential cryptanalysis. We
focus on the worst case probability of linear approximations or differen-
tials, i.e., MLP and MDP. Tables 1 and 2 show the minimum required
number of instructions to obtain a certain MLP or MDP. It can be seen
that 9 instructions is an important threshold. With fewer instructions, the
s-box has linear approximations and differentials with non-optimal prob-
abilities. For fewer than 9 instructions there always exist correlations of
1 between certain input and output bits. Using more instructions, on the
other hand, one can not improve the worst case probability, but reduce
the number of differentials or linear approximations that have the worst
case probability.
3 Intel Xeon CPU X7350 @ 2.93GHz

8

Fig. 5. Representative of class 13

Table 1. Minimum number of instructions required to implement an s-box with a
given MLP. MLP−1/2 is the probability bias and |c| is the correlation.

MLP −1/2 1/8 1/4 3/8 1/2
|c| 1/4 1/2 3/4 1

min. cost - 9 9 0

In [9], 16 affine equivalence classes are presented that have optimal
non-linear properties. The optimal properties are MDP = 1/4 and MLP
= 1/2 + 1/4. Class 13 (see appendix A) has the least implementation
cost among the optimal classes. The representative of class 13 is shown
in Fig. 5.

Another interesting property is the branch number. All representa-
tives that have been found have the same branch number. In fact, the
branch numbers are of the smallest possible value of 2. The representa-
tives can be considered as the essence of an s-box that achieves certain
non-linear properties. However, all found representatives are weak with
regard to linear mixing properties. This can be compensated for by the
linear/affine layer of a cipher. It can be shown that there exist invertible
linear mappings that translate any arbitrary differential at the input and
the output to differentials with weight 1. Thus, every linear equivalence
class and consequently also every affine equivalence class contains s-boxes
with branch number 2.

Table 2. Minimum number of instructions required to implement an s-box with a
given MDP

MDP 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

min. cost - 9 10 6 9 6 - 0

9

Table 3. The 4× 4-bit s-boxes used in some symmetric primitives

Primitive S-box Class

Serpent [1] S4, S5 9
S−1

4 ,S−1
5 10

S−1
0 ,S1 14

S0,S
−1
1 15

S2,S
−1
2 ,S6,S

−1
6 16

S3,S
−1
3 ,S7,S

−1
7 not found

Luffa [14] Q 16

Noekeon [3] S = S−1 13

4.2 Affine Equivalence and the NOT Instruction

We observed that none of the found representatives make use of the NOT
instruction. This implies that the optimal implementations of all of them
have zero as fixed point. The search finds one representative per class.
It can not be excluded that an equivalence class does contain another
s-box with the same number of instruction but without or with a differ-
ent fixed point. For class 13, it is interesting to notice that the optimal
implementation without fixed point found by Watanabe [14] needs 10 in-
structions instead of 9. The s-boxes were not equal, but affinely equivalent
to each other. One has to notice that the optimisation processes that are
compared have different target platforms.

Conjecture 1. We conjecture that there exist optimal implementations for
all 302 equivalence classes that do not make use of the NOT instruction.

For s-boxes that are designed with 5 registers and a structure that resem-
bles an unbalanced Feistel network [13], we have found many examples
showing that any NOT instruction can be moved using De Morgan’s laws
to either of the ends of the s-box. We call an s-box ‘Feistel resembling’ if
the outcome of a non-linear operation of maximum 4 registers is added to
another register. The affine equivalence makes NOT instructions at the
ends irrelevant because the affine constants can compensate them. For the
s-boxes that are not of this type no simple explanation has been found.
We leave a formal proof to further research.

4.3 Comparison with Known Primitives

Furthermore, we have classified the s-boxes of Serpent, Luffa and Noekeon [1,
3, 10]. Even though they are in classes for which we have found most ef-

10

ficient implementations, none of them is equal to a representative. The
reason for this is assumed to be the design strategy and the properties
that are variant within a class, like the involution in the case of Noekeon.
We will explain the reason for this in more detail in Sect. 5.

Interesting in this table is that Noekeon uses an s-box from class
13. Noekeon is a cipher designed for efficient bitsliced implementation,
and class 13 is the class for which we found the fastest bitsliced imple-
mentation. However, from knowing the cost of a representative one can
not conclude about the cost of any other s-box within the class. Second,
Noekeon requires that its s-box is an involution. This is only possible in
some of the classes for which the inverse s-box is member of the same
class, e.g., classes 11 and 13.

5 A New Design Approach

In the previous section, we compared the s-boxes used in existing primi-
tives with the representatives found in this work. It turned out that none
of the primitives used one of the representatives. Furthermore, it is not
possible to replace the s-boxes by one of the representatives because of the
design goals set by the designers. These design goals involve properties
that are variant within affine equivalence classes.

The design strategies for many primitives in use separate the design
of the various components from the s-box design. During the process of
designing the other parts, the specifications of the s-box are refined step
by step. Some of these refinements restrict properties that are variant
within a class. The table indicating the best implementations can only
be used if the specifications for the s-box contain only properties that are
invariant. Any of the variant properties is restricting the choice of which
s-box of the class has to be used and may cause that the most efficient
member, the representative, can not be chosen.

To benefit efficiently from the representatives, one has to follow a
new approach when designing the primitives. In the first step, the s-box
is chosen. For this purpose, the designer needs target platform specific
tables of most efficient representatives. One of the representatives will
be chosen depending on the non-linear properties that are desired. It is
important to choose the constraints with care. Some of the s-boxes have
the same histogram of the linear approximation table and the differential
distribution table but different implementation costs. After the s-box has
been chosen the linear layer is designed in such a way that all the design
goals of the cipher are fulfilled.

11

It is expected that this methodology leads to a cipher with low imple-
mentation cost. We concentrate on the search of s-box implementations
and leave the application of our results for cipher design for future re-
search.

6 Future Work

Verifying the new design approach. In Sect. 5, we introduced a
new design methodology for cryptographic primitives. The problem
of the interaction between the linear and the substitution layer has
not been fully investigated. We suggest to investigate if using the
most efficient s-boxes can lead to highly efficient primitives and that
possible shortcomings of the s-boxes regarding variant properties can
be compensated by the linear layer in an efficient way.

Generalising the findings to design larger s-boxes. This work
focused on the design of 4 × 4-bit s-boxes. The application of the
methods for larger s-boxes is assumed to be not feasible. Therefore,
we suggest to analyse if it is possible to generalise the findings of
4× 4-bit s-boxes to larger s-boxes.

Proof for NOT instruction. We suggest to further investigate the
fact that not a single one of the representatives found, makes use of
the NOT instruction. We conjecture that this is the case for all rep-
resentatives of the affine equivalence classes. A proof is left to future
research.

Extended search. The search targets a basic architecture. Modern pro-
cessors offer more advanced techniques, such as parallelism, pipelining
and instruction set extensions. Using these features for s-box imple-
mentations can result in other tradeoffs which could be investigated.

7 Conclusion

In this paper, we presented an approach to find efficient bitsliced imple-
mentations of invertible 4× 4-bit s-boxes. In a first step, we introduced a
search to find the most efficient implementations of s-boxes.

We presented a list (see appendix A) of optimal implementations for
a specified instruction set. This list contains the most efficient classes
covering 90% of all 4× 4-bit s-boxes.

The representatives have been analysed for their properties and were
compared with s-boxes used in known primitives. Finally, we presented a
new design methodology for cryptographic primitives.

12

References

1. R. J. Anderson, E. Biham, and L. R. Knudsen. The case for Serpent. In AES
Candidate Conference, pages 349–354, 2000.

2. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. In
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference
on Advances in Cryptology, volume 537 of LNCS, pages 2–21. Springer, 1991.

3. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. NESSIE proposal:
NOEKEON. Submitted as an NESSIE Candidate Algorithm, http://www.

cryptonessie.org, 2000.
4. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2002.
5. E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM. In

C. Clavier and K. Gaj, editors, CHES, volume 5747 of LNCS, pages 1–17. Springer,
2009.

6. R. Könighofer. A fast and cache-timing resistant implementation of the AES. In
CT-RSA, volume 4964 of LNCS, pages 187–202. Springer, 2008.

7. M. Matsui and J. Nakajima. On the power of bitslice implementation on Intel
Core2 processor. In CHES, volume 4727 of LNCS, pages 121–134. Springer, 2007.

8. M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL
cipher. In EUROCRYPT, volume 658 of LNCS, pages 81–91, 1992.

9. C. De Cannière. Analysis and design of symmetric encryption algorithms. PhD
thesis, K.U. Leuven, 2007.

10. C. De Cannière, H. Sato, and D. Watanabe. Hash function Luffa: Specification.
Submission to NIST (Round 2), 2009.

11. Intel Corporation. Intel(R) C++ compiler for Linux* intrinsics reference. URL:
http://software.intel.com/file/6373, 2006.

12. D. A. Osvik. Speeding up Serpent. In AES Candidate Conference, pages 317–329,
2000.

13. B. Schneier and J. Kelsey. Unbalanced feistel networks and block cipher design. In
D. Gollmann, editor, FSE, volume 1039 of LNCS, pages 121–144. Springer, 1996.

14. D. Watanabe. How to generate the Sbox of Luffa. Early Symmetric Crypto
Seminar, ESC2010, January 2010.

A List of Representatives

Tables 4–10 list the representatives of the affine equivalence classes. The
following properties are included: the linear histogram (c), the differential
histogram (p), the implementation cost, the branch number (bn) of the
representative, the maximum algebraic degree of the output bits (deg)
and the equivalence class that contains the inverse of the s-box (inv).

13

Table 4. Implementations of the affine equivalence classes

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

1 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
2 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
3 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
4 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
5 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
6 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
7 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
8 ? 120 30 0 1 90 15 0 0 0 0 0 1 ? ? 3 ?
9 0cabf9d4e8635172 112 32 0 1 84 18 0 0 0 0 0 1 11 2 3 10

10 01298bd7cfe654a3 112 32 0 1 84 18 0 0 0 0 0 1 12 2 3 9
11 0a43562edfb1c789 112 32 0 1 84 18 0 0 0 0 0 1 13 2 3 11
12 ? 112 32 0 1 84 18 0 0 0 0 0 1 ? ? 3 ?
13 086d5f7c4e2391ba 96 36 0 1 72 24 0 0 0 0 0 1 9 2 3 13
14 086c7e5f4d21b39a 96 36 0 1 72 24 0 0 0 0 0 1 10 2 3 15
15 0845d7fec6a391b2 96 36 0 1 72 24 0 0 0 0 0 1 10 2 3 14
16 01a2987cdef4563b 96 36 0 1 72 24 0 0 0 0 0 1 11 2 3 16
17 ? 120 30 0 1 93 12 1 0 0 0 0 1 ? ? 3 ?
18 02839b7eca65df14 112 32 0 1 87 15 1 0 0 0 0 1 12 2 3 20
19 04afb6372e81c95d 112 32 0 1 87 15 1 0 0 0 0 1 12 2 3 ?
20 02415f3e8bc6a9d7 112 32 0 1 87 15 1 0 0 0 0 1 12 2 2 18
21 0251c6afd7984e3b 112 32 0 1 87 15 1 0 0 0 0 1 13 2 3 21
22 ? 112 32 0 1 87 15 1 0 0 0 0 1 ? ? 3 ?
23 ? 120 30 0 1 96 9 2 0 0 0 0 1 ? ? 3 ?
24 ? 120 30 0 1 96 9 2 0 0 0 0 1 ? ? 3 ?
25 0c69735248af1dbe 96 36 0 1 78 18 2 0 0 0 0 1 11 2 2 26
26 06a953b842c7df1e 96 36 0 1 78 18 2 0 0 0 0 1 11 2 2 25
27 0a2387bfc5de4961 96 36 0 1 78 18 2 0 0 0 0 1 12 2 2 29
28 0a2387bf4d56c1e9 96 36 0 1 78 18 2 0 0 0 0 1 12 2 2 28
29 0913a4bf2e6587dc 96 36 0 1 78 18 2 0 0 0 0 1 12 2 3 27
30 06af7d5e48c391b2 96 36 0 1 81 15 3 0 0 0 0 1 11 2 3 30
31 04598ceb6a72f3d1 96 36 0 1 80 18 0 1 0 0 0 1 11 2 3 31
32 08a319f4c6e5d7b2 64 44 0 1 64 24 0 2 0 0 0 1 9 2 3 33
33 086d5f7e4c2193ba 64 44 0 1 64 24 0 2 0 0 0 1 9 2 2 32
34 ? 119 28 1 1 78 21 0 0 0 0 0 1 ? ? 3 ?
35 ? 119 28 1 1 78 21 0 0 0 0 0 1 ? ? 3 ?
36 ? 119 28 1 1 78 21 0 0 0 0 0 1 ? ? 3 ?
37 03298bd5efc476a1 111 30 1 1 72 24 0 0 0 0 0 1 11 2 3 37
38 03d74f985ec621ab 111 30 1 1 72 24 0 0 0 0 0 1 12 2 3 38
39 0e8952d7ca4b61f3 119 28 1 1 81 18 1 0 0 0 0 1 13 2 3 39
40 0283db4eca769f15 119 28 1 1 81 18 1 0 0 0 0 1 13 2 3 40
41 ? 119 28 1 1 81 18 1 0 0 0 0 1 ? ? 3 ?
42 ? 119 28 1 1 81 18 1 0 0 0 0 1 ? ? 3 ?
43 0c2784fa5961e3db 111 30 1 1 75 21 1 0 0 0 0 1 12 2 2 44
44 0c4d9fba8e635172 111 30 1 1 75 21 1 0 0 0 0 1 12 2 3 43
45 06abc84e79f2d153 111 30 1 1 75 21 1 0 0 0 0 1 12 2 3 45

14

Table 5. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

46 0d9163e5fb7ac842 119 28 1 1 84 15 2 0 0 0 0 1 13 2 3 ?
47 ? 119 28 1 1 84 15 2 0 0 0 0 1 ? ? 3 ?
48 ? 119 28 1 1 84 15 2 0 0 0 0 1 ? ? 3 ?
49 ? 119 28 1 1 84 15 2 0 0 0 0 1 ? ? 3 ?
50 ? 119 28 1 1 84 15 2 0 0 0 0 1 ? ? 3 ?
51 0283db7eca659f14 111 30 1 1 78 18 2 0 0 0 0 1 11 2 3 63
52 0285cf4b9a36de71 111 30 1 1 78 18 2 0 0 0 0 1 11 2 3 59
53 0c3e97af86d4512b 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 70
54 038a75dbcf6e1294 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 54
55 038a64dbcf7e1295 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 55
56 0481e37d6afbc952 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 57
57 04987bcf6ad251e3 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 56
58 0c2db39a6e857f14 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 58
59 086e7d5c4f21b39a 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 52
60 0cf1634b9d25a78e 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 66
61 0a24193685def7bc 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 62
62 0a23486519dcfb7e 111 30 1 1 78 18 2 0 0 0 0 1 12 2 3 61
63 04f28d617be3c95a 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 51
64 0cfbae138594726d 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 ?
65 0debaf129584736c 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 65
66 07d9af54bec86231 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 60
67 0ae36592748cdf1b 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 ?
68 086293efc7b5d4a1 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 73
69 04816aced372f95b 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 69
70 0281df5bce679a34 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 53
71 0182cf6ade579b34 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 71
72 0283db7fca659e14 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 ?
73 0243d6aec7b95f18 111 30 1 1 78 18 2 0 0 0 0 1 13 2 3 68
74 ? 111 30 1 1 78 18 2 0 0 0 0 1 ? ? 3 ?
75 ? 111 30 1 1 78 18 2 0 0 0 0 1 ? ? 3 ?
76 ? 111 30 1 1 78 18 2 0 0 0 0 1 ? ? 3 ?
77 0bf36482759cde1a 111 30 1 1 81 15 3 0 0 0 0 1 13 2 3 77
78 ? 111 30 1 1 81 15 3 0 0 0 0 1 ? ? 3 ?
79 08e42ac1d7f5b396 95 34 1 1 72 18 4 0 0 0 0 1 11 2 3 80
80 04693fd17b52eac8 95 34 1 1 72 18 4 0 0 0 0 1 11 2 3 79
81 09e65cf74d82ba31 95 34 1 1 72 18 4 0 0 0 0 1 11 2 2 82
82 0c6bd9f2e8a51734 95 34 1 1 72 18 4 0 0 0 0 1 11 2 3 81
83 08c52ae1d4f6b397 95 34 1 1 72 18 4 0 0 0 0 1 12 2 3 83
84 04ae8c219fbd5376 63 42 1 1 78 0 14 0 0 0 0 1 10 2 3 84
85 0dbea6372f91c845 111 30 1 1 80 18 0 1 0 0 0 1 12 2 2 85
86 0ea62c93f4d587b1 111 30 1 1 80 18 0 1 0 0 0 1 13 2 3 86
87 0913b2c486ed5a7f 118 26 2 1 72 21 2 0 0 0 0 1 13 2 3 87
88 0d7c2a186e5fb349 118 26 2 1 72 21 2 0 0 0 0 1 13 2 3 89
89 0c6749be1532f8da 118 26 2 1 72 21 2 0 0 0 0 1 13 2 3 88
90 0e2f84acb7d65319 118 26 2 1 72 21 2 0 0 0 0 1 13 2 3 90

15

Table 6. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

91 0329d7e8f4c51ba6 118 26 2 1 72 21 2 0 0 0 0 1 13 2 3 91
92 ? 118 26 2 1 72 21 2 0 0 0 0 1 ? ? 3 ?
93 0c2dbf16ae497358 110 28 2 1 66 24 2 0 0 0 0 1 11 2 2 95
94 095f18e4a7b3d2c6 110 28 2 1 66 24 2 0 0 0 0 1 11 2 2 94
95 04e8ca639bfd5172 110 28 2 1 66 24 2 0 0 0 0 1 12 2 3 93
96 0bd57f243a18e6c9 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 96
97 0913b24ca6ed587f 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 97
98 0425be968fdc731a 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 98
99 0724ae85bfdc6319 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 99

100 01b2c5e3f7d689a4 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 102
101 0ac5d736f4b912e8 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 101
102 09657cade4831bf2 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 100
103 0821e7ca6fd593b4 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 104
104 012bd4e3c7f598a6 118 26 2 1 75 18 3 0 0 0 0 1 13 2 3 103
105 ? 118 26 2 1 75 18 3 0 0 0 0 1 ? ? 3 ?
106 0a387f496edcb125 110 28 2 1 69 21 3 0 0 0 0 1 11 2 3 109
107 0425bd968ecf731a 110 28 2 1 69 21 3 0 0 0 0 1 11 2 3 115
108 03298bd5cfe476a1 110 28 2 1 69 21 3 0 0 0 0 1 11 2 3 111
109 086e5c7d4f2391ba 110 28 2 1 69 21 3 0 0 0 0 1 11 2 3 106
110 06853d942cab71fe 110 28 2 1 69 21 3 0 0 0 0 1 11 2 3 112
111 0bd74f985ec621a3 110 28 2 1 69 21 3 0 0 0 0 1 12 2 3 108
112 06e915dbf37a42c8 110 28 2 1 69 21 3 0 0 0 0 1 12 2 3 110
113 0ec9731dfb52a486 110 28 2 1 69 21 3 0 0 0 0 1 12 2 3 114
114 08a1f356e24db79c 110 28 2 1 69 21 3 0 0 0 0 1 12 2 3 113
115 0942563718fdabec 110 28 2 1 69 21 3 0 0 0 0 1 12 2 3 107
116 0c8962e5fb7a41d3 118 26 2 1 78 15 4 0 0 0 0 1 13 2 3 116
117 ? 118 26 2 1 78 15 4 0 0 0 0 1 ? ? 3 ?
118 ? 118 26 2 1 78 15 4 0 0 0 0 1 ? ? 3 ?
119 048e26c31f957bda 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 120
120 04cae86bf1d35972 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 119
121 03a1df79ec658b24 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 124
122 0281ce6bdf549a37 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 129
123 0281ce7bdf459a36 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 128
124 0d14376cfae2958b 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 121
125 0b12756acfe4938d 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 127
126 08f5b1e42ac3d697 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 126
127 02418ae693fcd7b5 110 28 2 1 72 18 4 0 0 0 0 1 12 2 3 125
128 0bd74f91c65ea823 110 28 2 1 72 18 4 0 0 0 0 1 13 2 3 123
129 08e52ac1f4d693b7 110 28 2 1 72 18 4 0 0 0 0 1 13 2 3 122
130 08a2d5e3f6c791b4 118 26 2 1 74 21 0 1 0 0 0 1 13 2 3 130
131 0d91ea6572f3c84b 118 26 2 1 77 18 1 1 0 0 0 1 12 2 3 131
132 0481e37dfa6b59c2 110 28 2 1 71 21 1 1 0 0 0 1 12 2 3 133
133 0c86d352f74e19ba 110 28 2 1 71 21 1 1 0 0 0 1 12 2 3 132
134 0829b71ea64df35c 110 28 2 1 74 18 2 1 0 0 0 1 11 2 2 135
135 0c635172e8abf9d4 110 28 2 1 74 18 2 1 0 0 0 1 11 2 3 134

16

Table 7. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

136 04e935fb71d86ac2 110 28 2 1 74 18 2 1 0 0 0 1 12 2 3 137
137 0ac9f75d1b32e684 110 28 2 1 74 18 2 1 0 0 0 1 12 2 3 136
138 0591e26d7afbc843 110 28 2 1 74 18 2 1 0 0 0 1 12 2 3 138
139 08f43bd6912c7e5a 110 28 2 1 74 18 2 1 0 0 0 1 12 2 2 139
140 0821f396ea45b7dc 110 28 2 1 74 18 2 1 0 0 0 1 12 2 3 141
141 0f415a6b97d2e8c3 110 28 2 1 74 18 2 1 0 0 0 1 12 2 3 140
142 0283df7ace659b14 94 32 2 1 62 24 2 1 0 0 0 1 9 2 3 143
143 0a6d5f7c4e2391b8 94 32 2 1 62 24 2 1 0 0 0 1 9 2 2 142
144 04ac8e239fbd5176 94 32 2 1 62 24 2 1 0 0 0 1 10 2 3 145
145 0821f6dac5e4b397 94 32 2 1 62 24 2 1 0 0 0 1 10 2 3 144
146 0814d5ea7f62b3c9 94 32 2 1 62 24 2 1 0 0 0 1 10 2 3 147
147 0425b796aec1f3d8 94 32 2 1 62 24 2 1 0 0 0 1 10 2 2 146
148 04617b5a8ce3d9f2 94 32 2 1 62 24 2 1 0 0 0 1 10 2 2 150
149 0c63d1fae82597b4 94 32 2 1 62 24 2 1 0 0 0 1 10 2 2 149
150 0e6bd9f2c8a51734 94 32 2 1 62 24 2 1 0 0 0 1 10 2 3 148
151 04af8d21be9c7356 94 32 2 1 62 24 2 1 0 0 0 1 11 2 3 153
152 0c81bf53d9762ea4 94 32 2 1 62 24 2 1 0 0 0 1 11 2 3 152
153 0a2395b8d7f6c4e1 94 32 2 1 62 24 2 1 0 0 0 1 11 2 3 151
154 0824f6ae5d7391cb 94 32 2 1 62 24 2 1 0 0 0 1 11 2 3 154
155 04639fd2e8cb517a 94 32 2 1 64 24 0 2 0 0 0 1 10 2 3 155
156 0c69a24ef758b31d 117 24 3 1 66 21 4 0 0 0 0 1 12 2 3 156
157 08296c5a4fdeb317 117 24 3 1 66 21 4 0 0 0 0 1 13 2 3 157
158 0bd57f26183ac4e9 117 24 3 1 69 18 5 0 0 0 0 1 13 2 3 158
159 08e5c7a4b391f6d2 117 24 3 1 69 18 5 0 0 0 0 1 13 2 3 160
160 08a9f65db217e3c4 117 24 3 1 69 18 5 0 0 0 0 1 13 2 3 159
161 0a8b46d2ce7f1395 117 24 3 1 69 18 5 0 0 0 0 1 13 2 3 161
162 08235cfae64719bd 117 24 3 1 69 18 5 0 0 0 0 1 13 2 3 162
163 0ac46e251b39f7d8 109 26 3 1 63 21 5 0 0 0 0 1 11 2 3 166
164 08e4c6a591b3d7f2 109 26 3 1 63 21 5 0 0 0 0 1 11 2 3 165
165 0ce53b91d7f284a6 109 26 3 1 63 21 5 0 0 0 0 1 11 2 3 164
166 046abec9f8d27351 109 26 3 1 63 21 5 0 0 0 0 1 11 2 3 163
167 0823b79ad5f64ce1 109 26 3 1 63 21 5 0 0 0 0 1 11 2 3 169
168 0a4e86c13bd5f792 109 26 3 1 63 21 5 0 0 0 0 1 12 2 3 168
169 06e842c397f5b1da 109 26 3 1 63 21 5 0 0 0 0 1 12 2 3 167
170 05bf8d349cae6217 109 26 3 1 63 21 5 0 0 0 0 1 12 2 3 170
171 0291e8a3f6d5b7c4 117 24 3 1 72 15 6 0 0 0 0 1 12 2 3 171
172 068cea2db7951f34 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 172
173 08235cfae74619bd 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 173
174 0219d7e3c6f48ab5 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 174
175 03a1ec69df748b25 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 177
176 0283ca6edb749f15 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 176
177 032476a5cfe98bd1 109 26 3 1 66 18 6 0 0 0 0 1 12 2 3 175
178 0289f75a6c4d3b1e 109 26 3 1 69 15 7 0 0 0 0 1 12 2 3 178
179 0ea3c84671f2d95b 117 24 3 1 65 24 1 1 0 0 0 1 12 2 3 179
180 072634bc58f9e1ad 117 24 3 1 65 24 1 1 0 0 0 1 13 2 3 181

17

Table 8. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

181 06b3e9c1fa4d2785 117 24 3 1 65 24 1 1 0 0 0 1 13 2 3 180
182 09324debf75618ac 117 24 3 1 68 21 2 1 0 0 0 1 13 2 3 182
183 0e42a6c3fbd97158 109 26 3 1 62 24 2 1 0 0 0 1 11 2 3 184
184 047bafe9d8c36251 109 26 3 1 62 24 2 1 0 0 0 1 11 2 3 183
185 041dbea5267fc983 109 26 3 1 62 24 2 1 0 0 0 1 11 2 3 185
186 0481eb7d62f3c95a 109 26 3 1 62 24 2 1 0 0 0 1 11 2 3 186
187 0ce53b91f7d4a286 109 26 3 1 62 24 2 1 0 0 0 1 12 2 3 187
188 0a3b29c5fe4d6781 109 26 3 1 62 24 2 1 0 0 0 1 12 2 2 188
189 0ea342c6fb78d951 117 24 3 1 80 9 6 1 0 0 0 1 12 2 3 189
190 0285ca4e9f36db71 109 26 3 1 74 12 6 1 0 0 0 1 11 2 3 190
191 06c18a4edf329b75 109 26 3 1 74 12 6 1 0 0 0 1 11 2 3 191
192 08e64c29d7f51b3a 93 30 3 1 65 15 7 1 0 0 0 1 10 2 3 193
193 08e6c4a1d7f593b2 93 30 3 1 65 15 7 1 0 0 0 1 10 2 3 192
194 08a1e2c6f7d4b395 116 22 4 1 60 21 6 0 0 0 0 1 12 2 3 194
195 0e6c84a17fd5b392 116 22 4 1 60 21 6 0 0 0 0 1 13 2 3 195
196 0d786e5c2a1fb349 116 22 4 1 60 21 6 0 0 0 0 1 13 2 3 196
197 0938e64bf75ca21d 116 22 4 1 63 18 7 0 0 0 0 1 12 2 3 197
198 08a1e6c3f7d4b295 116 22 4 1 66 15 8 0 0 0 0 1 12 2 3 198
199 08a1e6d3f7c5b294 116 22 4 1 66 15 8 0 0 0 0 1 12 2 3 199
200 0c6348aef71259bd 116 22 4 1 59 24 3 1 0 0 0 1 12 2 3 200
201 08e64c2bd7f5193a 108 24 4 1 56 24 4 1 0 0 0 1 11 2 3 201
202 08ce4623f5d791ba 108 24 4 1 56 24 4 1 0 0 0 1 11 2 3 203
203 024ce6a97f5d1b38 108 24 4 1 56 24 4 1 0 0 0 1 11 2 3 202
204 04a8ec23dbf95176 108 24 4 1 56 24 4 1 0 0 0 1 11 2 3 204
205 0ac46e2d1b397f58 108 24 4 1 62 18 6 1 0 0 0 1 11 2 3 206
206 08a17b95f3d2c6e4 108 24 4 1 62 18 6 1 0 0 0 1 11 2 3 205
207 0759aec8fbd26341 108 24 4 1 62 18 6 1 0 0 0 1 11 2 3 208
208 08297d5a4cefb316 108 24 4 1 62 18 6 1 0 0 0 1 11 2 3 207
209 02a846c397b1f5de 108 24 4 1 62 18 6 1 0 0 0 1 12 2 3 209
210 06ac24e397b5d1f8 108 24 4 1 62 18 6 1 0 0 0 1 12 2 3 211
211 0ac62e83b795f1d4 108 24 4 1 62 18 6 1 0 0 0 1 12 2 3 210
212 0d98ea65fb7341c2 116 22 4 1 73 12 5 2 0 0 0 1 12 2 3 212
213 0283de7bcf659a14 108 24 4 1 67 15 5 2 0 0 0 1 11 2 3 214
214 0392ce7bdf648a15 108 24 4 1 67 15 5 2 0 0 0 1 11 2 3 213
215 0281df7ace459b36 92 28 4 1 48 30 0 3 0 0 0 1 9 2 3 216
216 086f5d7e4c29b31a 92 28 4 1 48 30 0 3 0 0 0 1 9 2 2 215
217 0283de7bcf459a16 115 20 5 1 56 21 6 1 0 0 0 1 12 2 3 217
218 0829f75ae64db31c 107 22 5 1 52 24 4 2 0 0 0 1 9 2 3 218
219 0823b79ad5f6c4e1 107 22 5 1 52 24 4 2 0 0 0 1 10 2 3 219
220 08a2d5f3e7c691b4 115 20 5 1 64 15 6 2 0 0 0 1 12 2 3 220
221 08a2c4e597b1d3f6 107 22 5 1 58 18 6 2 0 0 0 1 11 2 3 221
222 08e6c4a197f5d3b2 107 22 5 1 58 18 6 2 0 0 0 1 11 2 3 222
223 08a64ce75df1b293 114 18 6 1 63 6 15 0 0 0 0 1 12 2 3 223
224 0462e8c3715bf9da 114 18 6 1 63 6 15 0 0 0 0 1 13 2 3 224
225 08465dbce7a291f3 114 18 6 1 54 21 4 3 0 0 0 1 12 2 3 225

18

Table 9. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

226 08a1d5f3c4e6b297 114 18 6 1 54 21 4 3 0 0 0 1 12 2 3 226
227 0abd4ef9823657c1 106 20 6 1 54 18 6 3 0 0 0 1 10 2 2 227
228 048c62e315f97bda 114 18 6 1 69 6 9 3 0 0 0 1 13 2 3 228
229 0823d7fa4ce591b6 106 20 6 1 63 9 9 3 0 0 0 1 11 2 3 229
230 0c69a24ef718b35d 113 16 7 1 62 9 8 4 0 0 0 1 11 2 3 230
231 0938e65bf74ca21d 110 10 10 1 65 0 5 10 0 0 0 1 11 2 3 231
232 092e7456cdfb83a1 94 32 2 1 66 23 1 0 1 0 0 1 11 2 3 232
233 03fc56ed47928a1b 94 32 2 1 66 23 1 0 1 0 0 1 11 2 2 233
234 097e4d6f5c38a21b 109 26 3 1 66 23 1 0 1 0 0 1 12 2 2 234
235 06ac8e239fbd5174 92 28 4 1 60 17 7 0 1 0 0 1 10 2 3 235
236 06ac8e219fbd7354 92 28 4 1 60 17 7 0 1 0 0 1 10 2 3 236
237 08e64c29f7d51b3a 107 22 5 1 48 29 3 0 1 0 0 1 11 2 3 237
238 0921b3d5f7a86e4c 107 22 5 1 48 29 3 0 1 0 0 1 12 2 3 238
239 08e64c29d5f71b3a 107 22 5 1 54 23 5 0 1 0 0 1 11 2 3 239
240 0ac46e29f7d53b18 107 22 5 1 60 17 7 0 1 0 0 1 11 2 3 240
241 08a719b35df6e2c4 105 18 7 1 58 11 9 2 1 0 0 1 11 2 3 241
242 0a23f7d86ec591b4 105 18 7 1 58 11 9 2 1 0 0 1 11 2 3 242
243 086d5f7ec4291b3a 62 40 2 1 48 33 0 0 0 1 0 1 9 2 2 243
244 08e64c2bf7d5193a 90 24 6 1 42 27 6 0 0 1 0 1 10 2 3 244
245 084a6e1d5c397f2b 112 28 0 2 57 21 7 0 0 0 0 1 12 2 3 245
246 08ab193246cf7d5e 96 32 0 2 51 21 9 0 0 0 0 1 10 2 2 246
247 0ba981234fe6dc57 112 28 0 2 50 30 2 1 0 0 0 1 11 2 2 247
248 0c2f1d7a48693b5e 96 32 0 2 44 30 4 1 0 0 0 1 9 2 2 251
249 012b89f7cde654a3 96 32 0 2 44 30 4 1 0 0 0 1 9 2 3 249
250 082b195d4f6e7c3a 96 32 0 2 44 30 4 1 0 0 0 1 10 2 3 250
251 024513768ecbf9da 96 32 0 2 44 30 4 1 0 0 0 1 10 2 2 248
252 0c7b3e6a2f4d5918 96 32 0 2 44 30 4 1 0 0 0 1 10 2 3 252
253 086f5d7e4c293b1a 64 40 0 2 32 36 0 4 0 0 0 1 7 2 2 256
254 086f5d7e4c2391ba 64 40 0 2 32 36 0 4 0 0 0 1 7 2 2 255
255 082b197c4e6d5f3a 64 40 0 2 32 36 0 4 0 0 0 1 8 2 3 254
256 046173528cebd9fa 64 40 0 2 32 36 0 4 0 0 0 1 8 2 2 253
257 086f5d7ec4a1b392 64 40 0 2 32 36 0 4 0 0 0 1 8 2 2 257
258 08a319f6c4e7d5b2 0 56 0 2 64 0 0 14 0 0 0 1 7 2 2 258
259 09f75d26183ac4eb 110 24 2 2 45 21 11 0 0 0 0 1 11 2 3 259
260 08a357dfb192c4e6 110 24 2 2 50 18 10 1 0 0 0 1 11 2 3 260
261 08a71df395b2c4e6 94 28 2 2 40 24 8 2 0 0 0 1 9 2 3 263
262 0459afebd8c16273 94 28 2 2 40 24 8 2 0 0 0 1 9 2 3 262
263 0812b3a95d46f7ce 94 28 2 2 40 24 8 2 0 0 0 1 9 2 2 261
264 04369ca78def512b 110 24 2 2 48 24 4 3 0 0 0 1 11 2 3 264
265 032547618bacfe9d 108 20 4 2 44 12 16 1 0 0 0 1 10 2 2 265
266 08297f5a6e4d3b1c 92 24 4 2 28 30 4 5 0 0 0 1 7 2 3 267
267 082b193a4ce5f7d6 92 24 4 2 28 30 4 5 0 0 0 1 8 2 2 266
268 082b3f1a5d7e4c69 92 24 4 2 28 30 4 5 0 0 0 1 8 2 3 268
269 0461dbf28ce9537a 56 28 8 1 0 56 0 0 0 0 0 2 9 2 3 269
270 092e1436cdfb85a7 96 32 0 2 48 29 3 0 1 0 0 1 11 2 3 270

19

Table 10. Implementations of the affine equivalence classes (continued)

Representative |c| = 1/4 1/2 3/4 1 p = 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 cost bn deg inv

271 082b1a6d5f7e4c39 96 32 0 2 48 29 3 0 1 0 0 1 11 2 3 271
272 046f953b1d7ec82a 110 24 2 2 36 35 3 0 1 0 0 1 11 2 3 272
273 0a28c6e53b91f7d4 92 24 4 2 40 17 11 2 1 0 0 1 9 2 3 273
274 082a4ce51b39d7f6 92 24 4 2 40 17 11 2 1 0 0 1 9 2 3 274
275 0a28c4e53b91f7d6 106 16 6 2 32 23 7 4 1 0 0 1 10 2 3 275
276 082ac4e519b3d7f6 104 12 8 2 42 11 5 9 1 0 0 1 10 2 3 276
277 082b7c5a496e3f1d 108 20 4 2 58 16 0 5 2 0 0 1 11 2 3 277
278 08a75db391f6c4e2 92 24 4 2 46 22 0 5 2 0 0 1 9 2 3 278
279 086e4c295d7f1b3a 90 20 6 2 42 9 15 0 3 0 0 1 9 2 3 279
280 082a4ce7193bf5d6 104 12 8 2 24 32 0 3 4 0 0 1 10 2 3 280
281 082a4ce5193bd7f6 104 12 8 2 48 8 8 3 4 0 0 1 10 2 3 281
282 082ac4e319b7d5f6 100 4 12 2 54 0 0 9 6 0 0 1 10 2 3 282
283 086e4c295d7f3b1a 62 36 2 2 36 21 12 0 0 1 0 1 8 2 3 283
284 04ae8c239dbf5176 62 36 2 2 36 21 12 0 0 1 0 1 8 2 3 284
285 08a35df2c4e791b6 60 32 4 2 32 27 0 7 0 1 0 1 7 2 3 285
286 08e64c2bd5f7193a 90 20 6 2 24 27 8 3 0 1 0 1 8 2 3 286
287 0823d5fa4ce791b6 88 16 8 2 38 13 8 4 2 1 0 1 8 2 3 287
288 046153728ce9dbfa 0 56 0 2 0 56 0 0 0 0 0 2 7 2 2 288
289 046b59728ce3d1fa 0 56 0 2 0 56 0 0 0 0 0 2 7 2 2 289
290 0463d9f28ceb517a 56 24 8 2 0 44 0 6 0 0 0 2 7 2 3 290
291 0127456389aedcbf 96 24 0 4 24 6 24 3 0 0 0 1 8 2 2 291
292 081b2a394c5e7f6d 64 32 0 4 0 36 0 12 0 0 0 1 6 2 2 292
293 0c2f1d7b483a596e 96 24 0 4 12 38 0 3 4 0 0 1 9 2 3 293
294 082ac4e719b3d5f6 88 8 8 4 12 20 0 9 4 2 0 1 7 2 3 294
295 086e4c2b5d7f193a 60 24 4 4 16 9 16 5 0 3 0 1 6 2 3 295
296 082b5d7f193e4c6a 84 0 12 4 36 3 0 0 12 3 0 1 7 2 3 296
297 082b197e4c6f5d3a 0 48 0 4 0 32 0 12 0 0 0 2 5 2 2 297
298 046351728cebd9fa 0 48 0 4 0 32 0 12 0 0 0 2 5 2 2 298
299 082b5d7a4c6f193e 56 16 8 4 0 26 0 12 0 2 0 2 5 2 3 299
300 082a4c6f193b5d7e 56 0 8 8 0 14 0 0 0 14 0 2 4 2 3 300
301 082b193a4c6f5d7e 0 32 0 8 0 0 0 24 0 0 0 4 3 2 2 301
302 0123456789abcdef 0 0 0 16 0 0 0 0 0 0 0 16 0 2 1 302

20

